Luyện tập (trang 48-49)

5/5 - (1 vote)

Bài 28 (trang 48 SGK Toán 8 tập 2): Cho bất phương trình x2 > 0.

a) Chứng tỏ x = 2, x = -3 là nghiệm của bất phương trình đã cho.

b) Có phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho hay không?

Lời giải:

a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0

Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.

Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0

Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.

b) Với x = 0 ta có x2 = 02 = 0

⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.

Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.

Bài 29 (trang 48 SGK Toán 8 tập 2): Tìm x sao cho:

a) Giá trị của biểu thức 2x – 5 không âm.

b) Giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5.

Lưu ý:

– không âm tức là ≥ 0

– không lớn hơn tức là ≤

Lời giải:

a) Để giá trị biểu thức 2x – 5 không âm

⇔ 2x – 5 ≥ 0.

⇔ 2x ≥ 5 (Chuyển vế và đổi dấu hạng tử -5).

Kiến thức áp dụng

+ Biểu thức A dương ⇔ A > 0

+ Biểu thức A không âm ⇔ A ≥ 0.

Bài 30 (trang 48 SGK Toán 8 tập 2): Một người có số tiền không quá 70000 đồng gồm 15 tờ giấy bạc với hai loại mệnh giá: loại 2000 đồng và loại 5000 đồng. Hỏi người đó có bao nhiêu tờ giấy bạc loại 5000 đồng?

Lời giải:

Gọi x là số tờ giấy bạc loại 5 000 đồng người đó có (0 < x < 15 , x ∈ N).

Vì tổng số tờ 2 000 đồng và 5 000 đồng là 15 tờ nên ta có điều kiện x < 15

và số tờ 2 000 đồng người đó có là: 15 – x (tờ)

⇒ Tổng số tiền người đó có là: 5.x + 2.(15 – x) (nghìn đồng).

Theo bài ra, người đó có số tiền không quá 70 nghìn đồng nên ta có bất phương trình:

Kết hợp với điều kiện nên x có thể nhận một trong các giá trị {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13}

Bài 31 (trang 48 SGK Toán 8 tập 2): Giải các bất phương trình và biểu diễn tập nghiệm trên trục số:

⇔ x > -4.

Vậy bất phương trình có nghiệm x > -4.

Kiến thức áp dụng

+ Ta có thể nhân hai vế của bất phương trình với cùng một số khác 0 và lưu ý:

Giữ nguyên chiều bất phương trình nếu số đó dương.

Đổi chiều bất phương trình nếu số đó âm.

+ Ta có thể một hạng tử từ vế này sang vế khác và phải đổi dấu hạng tử đó.

+ Khi trình bày, không cần ghi câu giải thích.

Bài 32 (trang 48 SGK Toán 8 tập 2): Giải các bất phương trình:

a) 8x + 3(x + 1) > 5x – (2x – 6)

b) 2x(6x – 1) > (3x – 2)(4x + 3)

Lời giải:

a) 8x + 3(x + 1) > 5x – (2x – 6)

⇔ 8x + 3x + 3 > 5x – 2x + 6

⇔ 8x + 3x – 5x + 2x > 6 – 3 (Chuyển vế, đổi dấu)

⇔ 8x > 3

b) 2x(6x – 1) > (3x – 2)(4x + 3)

⇔ 12x2 – 2x > 12x2 – 8x + 9x – 6

⇔ 12x2 – 2x – 12x2 + 8x – 9x > -6 (Chuyển vế, đổi dấu)

⇔ -3x > -6

⇔ x < 2 (Chia cả hai vế cho -3 < 0, BPT đổi chiều)

Vậy bất phương trình có nghiệm x < 2.

Kiến thức áp dụng

+ Ta có thể nhân hai vế của bất phương trình với cùng một số khác 0 và lưu ý:

Giữ nguyên chiều bất phương trình nếu số đó dương.

Đổi chiều bất phương trình nếu số đó âm.

+ Ta có thể một hạng tử từ vế này sang vế khác và phải đổi dấu hạng tử đó.

+ Khi trình bày không cần giải thích.

Bài 33 (trang 48-49 SGK Toán 8 tập 2): Đố: Trong một kì thi, bạn Chiến phải thi bốn môn Văn, Toán, Tiếng Anh và Hóa. Chiến đã thi ba môn và được kết quả như bảng sau:

Kỳ thi quy định muốn đạt loại giỏi phải có điểm trung bình các môn thi là 8 trở lên và không có môn nào bị điểm dưới 6. Biết môn Văn và Toán được tính hệ số 2. Hãy cho biết, để đạt loại giỏi bạn Chiến phải có điểm thi môn Toán ít nhất là bao nhiêu điểm?

Lời giải:

Gọi x là điểm thi môn Toán (x ≤ 10).

Vì môn Văn và Toán được tính hệ số 2 nên ta có điểm trung bình của Chiến là:

Kết hợp với (1) ta được: x ≥ 7,5.

Vậy để đạt được loại giỏi thì bạn Chiến phải có điểm thi môn Toán thấp nhất là 7,5 điểm.

Bài 34 (trang 49 SGK Toán 8 tập 2): Đố: Tìm sai lầm trong các “lời giải” sau:

a) Giải bất phương trình -2x > 23. Ta có:

-2x > 23 ⇔ x > 23 + 2 ⇔ x > 25.

Vậy nghiệm của bất phương trình là x > 25.

Giải bài tập sách giáo khoa toán 8 ⭐️⭐️⭐️⭐️⭐️

Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601

Be the first to comment

Leave a Reply

Your email address will not be published.


*