Luyện tập (trang 22-23)

5/5 - (1 vote)

Bài 29 (trang 22-23 SGK Toán 8 tập 2): Bạn Sơn giải phương trình

Bạn Hà cho rằng Sơn giải sai vì đã nhân hai vế với biểu thức x – 5 có chứa ẩn. Hà giải bằng cách rút gọn vế trái như sau:

Lời giải:

+) Cách làm của bạn Sơn sai vì chưa đặt điều kiện xác định cho phương trình đã nhân cả hai vế với ( x- 5).

+) Cách làm của bạn Hà sai vì chưa đặt điều kiện xác định cho phương trình đã rút gọn cả hai vế cho biểu thức (x- 5) phụ thuộc biến x.

+) Cách giải đúng

Điều kiện xác định: x ≠ 5

Ta có:

Suy ra: x2 – 5x = 5( x- 5)

x( x- 5) – 5(x – 5) = 0

( x- 5).( x- 5) =0

(x – 5)2 = 0

x – 5= 0

x = 5 ( không thỏa mãn ĐKXĐ).

Vậy phương trình đã cho vô nghiệm.

Bài 30 (trang 23 SGK Toán 8 tập 2): Giải các phương trình:

⇔ 42x – 28x – 2x = 6

⇔ 12x = 6

Kiến thức áp dụng

Để giải phương trình chứa ẩn ở mẫu ta cần:

+ Bước 1: Tìm điều kiện xác định (các mẫu thức khác 0).

+ Bước 2: Quy đồng mẫu số cả hai vế của phương trình rồi khử mẫu.

+ Bước 3: Giải phương trình vừa nhận được (Đưa về pt bậc nhất, đưa về pt tích; …)

+ Bước 4: Đối chiếu nghiệm với đkxđ rồi kết luận.

Bài 31 (trang 23 SGK Toán 8 tập 2): Giải các phương trình:

⇔ -2x2 + x + 1 = 2x2 – 2x

⇔ – 4x2 + 3x + 1 = 0

⇔ – 4x2 + 4x – x + 1 = 0

⇔ – 4x(x – 1) – ( x – 1) = 0

⇔ (- 4x – 1)(x – 1) = 0

⇔ – 4x – 1 = 0 hoặc x – 1 = 0

b) Điều kiện xác định: x ≠ 1; x ≠ 2; x ≠ 3.

⇒ 3(x – 3) + 2(x – 2) = x – 1

⇔ 3x – 9 + 2x – 4 = x – 1

⇔ 3x + 2x – x = 9 + 4 – 1

⇔ 4x = 12

⇔ x = 3 (không thỏa mãn điều kiện xác định)

Vậy phương trình vô nghiệm.

c) Ta có: 8+x3 = (2 + x).(4 – 2x + x2)

Mà 4 – 2x + x2 = (1 – 2x + x2 ) + 3 = ( 1- x)2 + 3 >0 với mọi x.

Do đó: 8 + x3 ≠ 0 ⇔ 2 + x ≠ 0 ⇔ x ≠ -2

+) Điều kiện xác định: x ≠ -2.

⇔ (2 + x). (4 – 2x + x2) + 4 – 2x + x2 = 12

⇔ 8 + x3 + 4 – 2x + x2 – 12 = 0

⇔ x3 + x2 – 2x = 0

⇔ x(x2 + x – 2) =0

Do đó, x = 0 hoặc x2 + x – 2 = 0. 

Giải phương trình x2 + x – 2 = 0.

⇔ x2 – 1 + x – 1 = 0.

⇔ (x + 1)(x − 1) + 1(x − 1) = 0

⇔ (x − 1)(x + 1 + 1) = 0

⇔ (x − 1)(x + 2) = 0

⇔ x – 1 = 0 hoặc x + 2 = 0

Nếu x – 1 = 0 thì x = 1 (TMĐK).

Nếu x + 2 = 0 thì x = −2 (không TMĐK).

Vậy tập nghiệm của phương trình là S = {0; 1}.

⇒ 13(x + 3) + (x – 3)(x + 3) = 6(2x + 7)

⇔ 13x + 39 + x2 – 9 = 12x + 42

⇔ x2 + x – 12 = 0

⇔ x2 +4x – 3x – 12 = 0

⇔ x(x + 4) – 3(x + 4) = 0

⇔ (x – 3)(x + 4) = 0

⇔ x – 3 = 0 hoặc x + 4 = 0

x – 3 = 0 ⇔ x = 3 (không thỏa mãn đkxđ)

x + 4 = 0 ⇔ x = -4 (thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {-4}.

Kiến thức áp dụng

Để giải phương trình chứa ẩn ở mẫu ta cần:

+ Bước 1: Tìm điều kiện xác định (các mẫu thức khác 0).

+ Bước 2: Quy đồng mẫu số cả hai vế của phương trình rồi khử mẫu.

+ Bước 3: Giải phương trình vừa nhận được (Đưa về pt bậc nhất, đưa về pt tích; …)

+ Bước 4: Đối chiếu nghiệm với đkxđ rồi kết luận.

Bài 32 (trang 23 SGK Toán 8 tập 2): Giải các phương trình:

Vậy nghiệm của phương trình là x = −1.

Kiến thức áp dụng

Áp dụng các phương pháp phân tích đa thức thành nhân tử (sử dụng hằng đẳng thức, đặt nhân tử chung, tách nhóm thích hợp, …) để đưa phương trình về dạng phương trình tích.

Bài 33 (trang 23 SGK Toán 8 tập 2): Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:

Giải bài tập sách giáo khoa toán 8 ⭐️⭐️⭐️⭐️⭐️

Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601

Be the first to comment

Leave a Reply

Your email address will not be published.


*