Bài 2: Nhân đa thức với đa thức

5/5 - (1 vote)

Để học tốt Toán 8, phần này giúp bạn giải các bài tập trong sách giáo khoa Toán 8 được biên soạn bám sát theo nội dung sách Toán 8.

Trả lời câu hỏi Toán 8 Tập 1 Bài 2 trang 7:

Trả lời câu hỏi Toán 8 Tập 1 Bài 2 trang 7: Làm tính nhân:

a) (x + 3)(x2 + 3x – 5);

b) (xy – 1)(xy + 5).

Lời giải

a) (x + 3)(x2 + 3x – 5)

= x.(x2 + 3x – 5) + 3.(x2 + 3x – 5)

= x.x2 + x.3x + x.(–5) + 3.x2 + 3.3x + 3.(–5)

= x3 + 3x2 – 5x + 3x2 + 9x – 15

= x3 + (3x2 + 3x2) + (9x – 5x) – 15

= x3 + 6x2 + 4x – 15.

b) (xy – 1)(xy + 5)

= xy.(xy + 5) + (–1).(xy + 5)

= xy.xy + xy.5 + (–1).xy + (–1).5

= x2y2 + 5xy – xy – 5

= x2y2+ 4xy – 5.

Trả lời câu hỏi Toán 8 Tập 1 Bài 2 trang 7: Viết biểu thức tính diện tích của một hình chữ nhật theo x và y, biết hai kích thước của hình chữ nhật đó là (2x + y) và (2x – y).

Áp dụng: Tính diện tích hình chữ nhật khi x = 2,5 mét và y = 1 mét.

Lời giải

Biểu thức tính diện tích hình chữ nhật là:

S = (2x + y).(2x – y)

   = 2x.(2x – y) + y.(2x – y)

   = 2x.2x + 2x.(–y) + y.2x + y.(–y)

   = 4x2 – 2xy + 2xy – y2

   = 4x2 – y2

Áp dụng : khi x = 2,5 mét và y = 1 mét

⇒ S = 4.2,52 – 12 = 4.6,25 – 1 = 25 – 1 = 24

Vậy diện tích của hình chữ nhật là: 24 mét vuông

Bài 7 (trang 8 SGK Toán 8 Tập 1): Làm tính nhân

a) (x2 – 2x + 1)(x – 1)

b) (x3 – 2x2 + x – 1)(5- x)

Lời giải:

a) (x2 – 2x + 1)( x – 1)

   = x2.(x – 1) + (–2x).(x – 1) + 1.(x – 1)

   = x2.x + x2.(– 1) + (– 2x).x + (–2x).(–1) + 1.x + 1.(–1)

   = x3 – x2 – 2x2 + 2x + x – 1

   = x3 – (x2 + 2x2) + (2x + x) – 1

   = x3 – 3x2 + 3x – 1

b) (x3 – 2x2 + x – 1)(5 – x)

   = (x3 – 2x2 + x – 1).5 + (x3 – 2x2 + x – 1).(–x)

   = x3.5 + (–2x2).5 + x.5 + (–1).5 + x3.(–x) + (–2x2).(–x) + x.(–x) + (–1).(–x)

   = 5x3 – 10x2 + 5x – 5 – x4 + 2x3 – x2 + x

   = –x4 + (5x3 + 2x3) – (10x2 + x2) + (5x + x) – 5

   = –x4 + 7x3 – 11x2 + 6x – 5

Ta có:

(x3 – 2x2 + x – 1).(x – 5)

= (x3 – 2x2 + x – 1).[–(5 – x)]

= – (x3 – 2x2 + x – 1).(5 – x)

= – (–x4 + 7x3 – 11x2 + 6x – 5)

= x4 – 7x3 + 11x2 – 6x + 5.

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

+ Với hai đa thức A, B bất kì ta luôn có : A.(–B) = –A.B

Bài 8 (trang 8 SGK Toán 8 Tập 1): Làm tính nhân:

Lời giải:

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Bài 9 (trang 8 SGK Toán 8 Tập 1): Điền kết quả tính được vào bảng:

Giá trị của x và yGiá trị biểu thức (x – y)(x2 + xy + y2)
x = -10 ; y = 2
x = -1 ; y = 0
x = 2 ; y = -1
x = -0,5 ; y = 1,25

Lời giải:

Ta có:

A = (x – y).(x2 + xy + y2)

   = x.(x2 + xy + y2) + (–y).(x2 + xy + y2)

   = x.x2 + x.xy + x.y2 + (–y).x2 + (–y).xy + (–y).y2

   = x3 + x2y + xy2 – x2y – xy2 – y3

   = x3 – y3 + (x2y – x2y) + (xy2 – xy2)

   = x3 – y3.

Tại x = –10, y = 2 thì A = (–10)3 – 23 = –1000 – 8 = –1008

Tại x = –1 ; y = 0 thì A = (–1)3 – 03 = –1 – 0 = –1

Tại x = 2 ; y = –1 thì A = 23 – (–1)3 = 8 – (–1) = 9

Tại x = –0,5 ; y = 1,25 thì A = (–0,5)3 – 1,253 = –0,125 – 1,953125 = –2,078125

Vậy ta có bảng sau :

Giá trị của x và yGiá trị biểu thức (x – y)(x2 + xy + y2)
x = -10 ; y = 2-1008
x = -1 ; y = 0-1
x = 2 ; y = -19
x = -0,5 ; y = 1,25-2,078125

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

+ Để tính giá trị biểu thức khi cho trước các giá trị của biến, ta nên rút gọn biểu thức trước khi thay giá trị .

Luyện tập (trang 8-9)

Bài 10 (trang 8 SGK Toán 8 Tập 1): Thực hiện phép tính :

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Bài 11 (trang 8 SGK Toán 8 Tập 1): Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7

Lời giải:

(x – 5)(2x + 3) – 2x(x – 3) + x + 7

= x.(2x + 3) + (–5).(2x + 3) – 2x.(x – 3) + x + 7

= (x.2x + x.3) + (–5).2x + (–5).3 – (2x.x + 2x.(–3)) + x + 7

= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7

= (2x2 – 2x2) + (3x – 10x + 6x + x) + 7 – 15

= – 8

Vậy với mọi giá trị của biến x, biểu thức luôn có giá trị bằng –8

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Bài 12 (trang 8 SGK Toán 8 Tập 1): Tính giá trị của biểu thức (x2 – 5)(x + 3) + (x + 4)(x – x2) trong mỗi trường hợp sau:

a) x = 0 ;    b) x = 15 ;    c) x = -15 ;    d) x = 0,15

Lời giải:

Rút gọn biểu thức:

A = (x2 – 5)(x + 3) + (x + 4)(x – x2)

   = x2.(x + 3) + (–5).(x + 3) + x.(x – x2) + 4.(x – x2)

   = x2.x + x2.3 + (–5).x + (–5).3 + x.x + x.(–x2) + 4.x + 4.(–x2)

   = x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2

   = (x3 – x3) + (3x2 + x2 – 4x2) + (4x – 5x) – 15

   = –x – 15.

a) Nếu x = 0 thì A = –0 – 15 = –15

b) Nếu x = 15 thì A = –15 – 15 = –30

c) Nếu x = –15 thì A = –(–15) – 15 = 15 – 15 = 0

d) Nếu x = 0,15 thì A = –0,15 – 15 = –15,15

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

+ Để tính giá trị biểu thức khi cho trước các giá trị của biến, ta nên rút gọn biểu thức trước khi thay giá trị.

Bài 13 (trang 9 SGK Toán 8 Tập 1): Tìm x, biết:

(12x – 5)(4x – 1) + (3x – 7)(1 – 16x) = 81

Lời giải:

Rút gọn vế trái:

VT = (12x – 5)(4x – 1) + (3x – 7)(1 – 16x)

     = 12x.(4x – 1) + (–5).(4x – 1) + 3x.(1 – 16x) + (–7).(1 – 16x)

     = 12x.4x+ 12x.(–1) + (–5).4x + (–5).(–1) + 3x.1 + 3x.(–16x) + (–7).1 + (–7).(–16x)

     = 48x2 – 12x – 20x + 5 + 3x – 48x2 – 7 + 112x

     = (48x2 – 48x2) + (– 12x – 20x + 3x + 112x) + (5 – 7)

     = 83x – 2

Vậy ta có:

83x – 2 = 81

       83x = 81 + 2

       83x = 83

           x = 83 : 83

           x = 1.

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Bài 14 (trang 9 SGK Toán 8 Tập 1): Tìm ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 192.

Lời giải:

Gọi 3 số chẵn liên tiếp là a, a + 2, a + 4 (a ≥ 0; a ∈ N; a là số chẵn)

Tích của hai số sau là (a + 2)(a + 4)

Tích của hai số đầu là a.(a + 2)

Theo đề bài ta có:

(a + 2)(a + 4) – a(a + 2) = 192

a.(a + 4) + 2.(a + 4) – a.(a + 2) = 192

a2 + 4a + 2a + 8 – a2 – 2a = 192

(a2 – a2) + (4a + 2a – 2a) + 8 = 192

4a + 8 = 192

4a = 192 – 8

4a = 184

a = 184 : 4

a = 46.

Vậy 3 số chẵn đó là 46, 48, 50.

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Bài 15 (trang 9 SGK Toán 8 Tập 1): Làm tính nhân

Kiến thức áp dụng

+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Giải SBT Toán 8 Bài 2: Nhân đa thức với đa thức

Để học tốt Toán lớp 8, dưới đây liệt kê các bài giải bài tập Sách bài tập Toán 8 Bài 2: Nhân đa thức với đa thức. Bạn vào tên bài hoặc Xem lời giải để theo dõi bài giải sbt Toán lớp 8 tương ứng.

Bài 6 trang 6 SBT Toán 8 Tập 1: 6. Thực hiện phép tính:

a) (5x – 2y)(x2 – xy + 1);

b) (x – 1)(x + 1)(x + 2);

Bài 7 trang 6 SBT Toán 8 Tập 1: Thực hiện phép tính

Bài 8 trang 6 SBT Toán 8 Tập 1: 8. Chứng minh:

a. (x – 1)(x2 + x + 1) = x3 – 1

b. (x3 + x2y + xy2 + y3)(x – y) = x4 – y4

Lời giải:

a. Ta có: VT = (x – 1)(x2 + x +1)

      = x.(x2 + x +1) + (– 1)(x2 + x +1)

      = x3 + x2 + x – x2 – x – 1

      = x3 – 1 = VP (đpcm)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b. Ta có: VT = (x3 + x2y + xy2 + y3)(x – y)

      = ( x- y). (x3 + x2y + xy2 + y3).

      = x. (x3 + x2y + xy2 + y3 ) – y(x3 + x2y + xy2 + y3)

      = x4 + x3y + x2y2 + xy3 – x3y – x2y2 – xy3 – y4

      = x4 – y4 = VP (đpcm)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Bài 9 trang 6 SBT Toán 8 Tập 1: 9. Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2.

Lời giải:

Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)

b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)

a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2

Vì 9 ⋮ 3 nên 9qk ⋮ 3

Vì 6 ⋮ 3 nên 6q ⋮ 3

Vì 3⋮ 3 nên 3k ⋮ 3

Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)

Bài 10 trang 6 SBT Toán 8 Tập 1: Chứng minh rằng biểu thức n(2n – 3) – 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n.

Lời giải:

Ta có: n(2n – 3) – 2n(n + 1) = 2n2 – 3n – 2n2 – 2n = – 5n

Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .

Bài tập bổ sung (trang 6)

Bài 2.1 trang 6 SBT Toán 8 Tập 1: Kết quả của phép tính (x − 5)(x + 3) là:

A. x2 − 15

B. x2 − 8x − 15

C. x2 + 2x − 15

D. x2 − 2x − 15

Lời giải:

Chọn D.

(x − 5)(x + 3) = x(x + 3) – 5( x + 3) = x2 + 3x – 5x – 15 = x2 − 2x − 15

Bài 2.2 trang 6 SBT Toán 8 Tập 1: Chứng minh rằng giá trị của biểu thức (n − 1)(3 − 2n) − n(n + 5) chia hết cho 3 với mọi giá trị của n.

Lời giải:

Ta có: (n − 1)(3 − 2n) − n(n + 5)

= n(3 – 2n) – 1.(3 – 2n) – n.n – n.5

= 3n − 2n2 – 3 + 2n − n2 − 5n

= (–2n2– n2) + (3n + 2n – 5n) – 3

= −3n2 – 3 = −3(n2 + 1).

Vì –3 ⁝ 3 nên – 3(n2 +1) ⁝ 3 với mọi giá trị của n. (điều phải chứng minh).

Vậy biểu thức chia hết cho 3 với mọi giá trị của n.

Lý thuyết Nhân đa thức với đa thức hay, chi tiết

A. Lý thuyết

1. Quy tắc nhân đa thức với đa thức

Muốn nhân một đa thưc với một đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

Tích của hai đa thức là một đa thức

2. Công thức nhân đa thức và đa thức

Cho A, B, C, D là các đa thức ta có:

( A + B ).( C + D ) = A.( C + D ) + B.( C + D ) = AC + AD + BC + BD.

Ví dụ 1: Thực hiện các phép tính sau:

a, ( x -2y )( x2y2 – xy + 2y )

b, ( 1/2xy -1 ).( x3 -2x -6 )

Hướng dẫn:

a) Ta có: ( x -2y )( x2y2 – xy + 2y ) = x( x2y2 – xy + 2y ) – 2y( x2y2 – xy + 2y )

= x3y2 – x2y + 2xy – 2x2y3 + 2xy2 – 4y2

b) Ta có: ( 1/2xy -1 ).( x3 -2x -6 ) = 1/2xy.( x3 -2x -6 ) – ( x3 -2x -6 )

= 1/2x4y – x2y – 3xy – x3 + 2x + 6.

B. Bài tập tự luyện

Bài 1: Thực hiện các phép tính sau

a, ( x2 -1 )( x2 + 2x )

b, ( x + 3 )( x2 + 3x -5 )

c, ( x -2y )( x2y2 – xy + 2y )

d, ( 1/2xy -1 )( x3 -2x -6 )

Hướng dẫn:

a) Ta có: ( x2 -1 )( x2 + 2x ) = x2( x2 + 2x ) – ( x2 + 2x )

= x4 + 2x3 – x2 – 2x

b) Ta có ( x + 3 )( x2 + 3x -5 ) = x( x2 + 3x -5 ) + 3( x2 + 3x -5 )

= x3 + 3x2 – 5x + 3x2 + 9x – 15 = x3 + 6x2 + 4x – 15

c) Ta có ( x -2y )( x2y2 – xy + 2y ) = x( x2y2 – xy + 2y ) – 2y( x2y2 – xy + 2y )

= x3y2 – x2y + 2xy – 2x2y3 + 2xy2 – 4y2

d) Ta có ( 1/2xy -1 )( x3 -2x -6 ) = 1/2xy( x3 -2x -6 ) – ( x3 -2x -6 )

= 1/2x4y – x2y – 3xy – x3 + 2x + 6

Bài 2: Tìm x biết

a. (x + 2)(x + 3) – (x – 2)(x + 5) = 6

b. 3(2x – 1)(3x – 1) – (2x – 3)(9x – 1) = 0

Hướng dẫn:

a) Ta có:

Vậy giá trị x cần tìm là x = -5

b) Ta có 3( 2x – 1 )( 3x – 1 ) – ( 2x – 3 )( 9x – 1 ) = 0

⇔ 3( 6x2 – 2x – 3x + 1 ) – ( 18x2 – 2x – 27x + 3 ) = 0

⇔ 18x2 – 15x + 3 – 18x2 + 29x – 3 = 0

⇔ 14x = 0 ⇔ x = 0

Vậy giá trị x cần tìm là x = 0.

Trắc nghiệm Nhân đơn thức với đa thức có đáp án – Toán lớp 8

Bài 5: Kết quả của phép tính (ax2 + bx – c).2a2x bằng

A. 2a4x3 + 2a2bx2 – 2a2cx         

B. 2a3x3 + bx – c

C. 2a4x2 + 2a2bx2 – a2cx           

D. 2a3x3 + 2a2bx2 – 2a2cx

Hiển thị đáp án

Lời giải

Ta có: (ax2 + bx – c).2a2x = 2a2x.(ax2 + bx – c)

                                      = 2a2x.ax2 + 2a2x.bx – 2a2x.c

                                      = 2a3x3 + 2a2bx2 – 2a2cx

Đáp án cần chọn là: D

Bài 7: Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằng

A. 24x5 + 20x4 + 12x3 – 4x2     

B. -24x5 – 20x4 + 12x3 + 1

C. -24x5 – 20x4 + 12x3 – 4x2     

D. -24x5 – 20x4 – 12x3 + 4x2

Hiển thị đáp án

Lời giải

Ta có: -4x2(6x3 + 5x2 – 3x + 1)

= (-4x2).6x3 + (-4x2).5x2 + (-4x2).(-3x) + (-4x2).1

= -24x5 – 20x4 + 12x3 – 4x2

Đáp án cần chọn là: C

Bài 8: Tích ( x- y)(x + y) có kết quả bằng

A. x2 – 2xy + y2    

B. x2 + y2    

C. x2 – y2    

D. x2 + 2xy + y2

Hiển thị đáp án

Lời giải

Ta có ( x- y)(x + y) = x.x + x.y – x.y – y.y = x2 – y2

Đáp án cần chọn là: C

Bài 9: Tích (2x – 3)(2x + 3) có kết quả bằng

A. 4x2 + 12x+ 9    

B. 4x2 – 9   

C. 2x2 – 3   

D. 4x2 + 9

Hiển thị đáp án

Lời giải

Ta có (2x – 3)(2x + 3) = 2x.2x + 2x.3 – 3.2x + (-3).3

          = 4x2 + 6x – 6x – 9 = 4x2 – 9

Đáp án cần chọn là: B

Bài 10: Giá trị của biểu thức P = -2x2y(xy + y2) tại x = -1; y = 2 là

A. 8                     

B. -8           

C. 6            

D. -6

Hiển thị đáp án

Lời giải

Thay x = -1; y = 2 vào biểu thức P = -2x2y(xy + y2) ta được

P = -2.(-1)2.2[(-1).2 + 22] = -4.2 = -8

Đáp án cần chọn là: B

Bài 11: Chọn câu sai.

A. Giá trị của biểu thức ax(ax + y) tại x = 1; y = 0 là a2.

B. Giá trị của biểu thức ay2(ax + y) tại x = 0; y = 1 là (1 + a)2.

C. Giá trị của biểu thức -xy(x – y) tại x = -5; y = -5 là 0.

D. Giá trị của biểu thức xy(-x – y) tại x = 5; y = -5 là 0.Hiển thị đáp án

Lời giải

+) Thay x = 1; y = 0 vào biểu thức ax(ax + y) ta được 

a.1(a.1+0) = a.a = a2 nên phương án A đúng

+) Thay x = 0, y = 1 vào biểu thức ay2(ax + y) ta được 

a.12(a.0+1) = a.1 = a nên phương án B sai.

+) Thay x = −5, y = −5 vào biểu thức −xy(x − y) ta được 

−(−5)(−5)[−5−(−5)] = −25.0 = 0  nên phương án C đúng

+) Thay x = 5, y = −5 vào biểu thức xy(−x − y) ta được 

5.(−5)[−5−(−5)] = −25.0 = 0 nên phương án D đúng.

Đáp án cần chọn là: B

Bài 12: Rút gọn và tính giá trị của biểu thức

Bài 13: Chọn câu đúng.

A. (x2 – 1)(x2 + 2x) = x4 – x3 – 2x      

B. (x2 – 1)(x2 + 2x) = x4 – x2 – 2x

C. (x2 – 1)(x2 + 2x) = x4 + 2x3 – x2 – 2x

D. (x2 – 1)(x2 + 2x) = x4 + 2x3 – 2x

Hiển thị đáp án

Lời giải

Ta có: (x2 – 1)(x2 + 2x) = x2.x2 + x2.2x – 1.x2 – 1.2x

                                      = x4 + 2x3 – x2 – 2x

Đáp án cần chọn là: C

Bài 14: Chọn câu đúng.

A. (x – 1)(x2 + x + 1) = x3 – 1            

B. (x – 1)(x + 1) = 1 – x2

C. (x + 1)(x – 1) = x2 + 1                   

D. (x2 + x + 1)(x – 1) = 1 – x2

Hiển thị đáp án

Lời giải

Ta có

+) (x – 1)(x + 1) = x.x + x – x – 1 = x2 – 1 nên phương án B sai, C sai

+) (x – 1)(x2 + x + 1)

= x.x2 + x.x + x.1 – x2 – x – 1

= x3 + x2 + x – x2 – x – 1 = x3 – 1 nên phương án D sai, A đúng

Đáp án cần chọn là: A

Bài 15: Chọn câu đúng.

A. (2x – 1)(3x2 -7x + 5) = 6x3 – 17x2 + 17x – 1

B. (2x – 1)(3x2 -7x + 5) = 6x3 – 4x2 + 4x – 5

C. (2x – 1)(3x2 -7x + 5) = 6x3 – 17x2 + 10x – 5

D. (2x – 1)(3x2 -7x + 5) = 6x3 – 17x2 + 17x – 5

Hiển thị đáp án

Lời giải

Ta có (2x – 1)(3x2 -7x + 5) = 2x.3x2 + 2x.(-7x) + 2x.5 – 3x2 – (-7x) – 1.5

                                      = 6x3 – 14x2 + 10x – 3x2 + 7x – 5

                                      = 6x3 – 17x2 + 17x – 5

Đáp án cần chọn là: D

Bài 16: Cho 4(18 – 5x) – 12(3x – 7) = 15(2x – 16) – 6(x + 14). Kết quả x bằng:

A. 8            

B. -8           

C. 6            

D. -6

Hiển thị đáp án

Lời giải

Ta có

4(18 – 5x) – 12(3x – 7) = 15(2x – 16) – 6(x + 14)

⇔ 72 – 20x – 36x + 84 = 30x – 240 – 6x – 84

⇔ -56x + 156 = 24x – 324

⇔ 24x + 56x = 156 +324

⇔ 80x = 480

⇔ x = 6

Vậy x = 6

Đáp án cần chọn là: C

Bài 17: Cho 2x(3x – 1) – 3x(2x – 3) = 11. Kết quả x bằng:

Bài 18: Cho biểu thức P = 2x(x2 – 4) + x2(x2 – 9). Hãy chọn câu đúng:

A. Giá trị của biểu thức P tại x = 0 là 1

B. Giá trị của biểu thức P tại x = 2 là -20

C. Giá trị của biểu thức P tại x = -2 là 30

D. Giá trị của biểu thức P tại x = -9 là 0

Hiển thị đáp án

Lời giải

Thay x = 0 vào P ta được

P = 2.0(02 – 4) + 02(02 – 9) = 0 nên A sai.

Thay x = -2 vào P ta được

P = 2.(-2).((-2)2 – 4) + (-2)2.((-2)2 – 9) = -20 nên C sai.

Thay x = -9 vào P ta được

P = 2.(-9).((-9)2 – 4) + (-9)2.((-9)2 – 9) = 4446 nên D sai.

Thay x = 2 vào P ta được

P = 2.2.(22 – 4) + 22(22 – 9) = 4.0 + 4.(-5) = -20 nên B đúng

Đáp án cần chọn là: B

Bài 19: Cho biểu thức M = x2(3x – 2) + x(-3x2 + 1). Hãy chọn câu đúng

A. Giá trị của biểu thức M tại x = 0 là 1

B. Giá trị của biểu thức M tại x = 1 là 1

C. Giá trị của biểu thức M tại x = -2 là -6

D. Giá trị của biểu thức M tại x = 3 là -15

Hiển thị đáp án

Lời giải

Ta có M = x2(3x – 2) + x(-3x2 + 1) = x2.3x + x2.(-2) + x.(-3x2) + x.1

                                                    = 3x3 – 2x2 – 3x3 + x = -2x2 + x

Thay x = 0 vào M = -2x2 + x ta được

M = -2.02 + 0 = 0 nên A sai.

Thay x = 1 vào M = -2x2 + x ta được

M = -2.12 + 1 = -1 nên B sai

Thay x = -2 vào M = -2x2 + x ta được

M = -2.(-2)2 + (-2) = -10 nên C sai.

Thay x = 3 vào M = -2x2 + x ta được

M = -2.32 + 3 = -15 nên D đúng

Đáp án cần chọn là: D

Bài 20: Cho biểu thức A = x(x + 1) + (1 – x)(1 + x) – x. Khẳng định nào sau đây là đúng.

A. A = 2 – x

B. A < 1     

C. A > 0     

D. A > 2

Hiển thị đáp án

Lời giải

Ta có A = x(x + 1) + (1 – x)(1 + x) – x = x2 + x + 1 + x – x – x2 – x = 1

Suy ra A = 1 > 0

Đáp án cần chọn là: C

Bài 21: Cho bểu thức B = (2x – 3)(x +7) – 2x(x + 5) – x. Khẳng định nào sau đây là đúng.

A. B = 21 – x

B. B < -1    

C. B > 0     

D. 10 < B < 20

Hiển thị đáp án

Lời giải

Ta có B = (2x – 3)(x +7) – 2x(x + 5) – x

          = 2x.x + 2x.7 – 3.x – 3.7 – 2x.x – 2x.5 – x

          = 2x2 + 14x – 2x – 21 – 2x2 – 10x – x

          = (2x2 – 2x2) + (14x – 3x – 10x – x) – 21 = -21

Đáp án cần chọn là: B

Bài 22: Cho biểu thức C = x(y + z) – y(z + x) – z(x – y). Chọn khẳng định đúng.

A. Biểu thức C không phụ thuộc vào x; y; z

B. Biểu thức C phụ thuộc vào cả x; y; z

C. Biểu thức C chỉ phụ thuộc vào y

D. Biểu thức C chỉ phụ thuộc vào z

Hiển thị đáp án

Lời giải

Ta có C = x(y + z) – y(z + x) – z(x – y)

= xy + xz – yz – xy – zx + xy

= (xy – xy) + (zy – zy) + (xz – zx) = 0

Nên C không phụ thuộc vào x; y; z

Đáp án cần chọn là: A

Bài 23: Cho biểu thức D = x(x – y) + y(x + y) – (x + y)(x – y) – 2y2. Chọn khẳng định đúng.

A. Biểu thức D có giá trị là một số dương

B. Biểu thức D có giá trị là một số âm

C. Biểu thức D có giá trị phụ thuộc vào y, x

D. Biểu thức D có giá trị là 0

Hiển thị đáp án

Lời giải

Ta có

D = x(x – y) + y(x + y) – (x + y)(x – y) – 2y2

= x2 – xy + xy + y2 – (x2 – xy + xy – y2) – 2y2

= x2 + y2 – (x2 – y2) – 2y2

= x2 + y2 – x2 + y2 – 2y2

= (x2 – x2) + (y2 + y2 – 2y2)

= 0

Nên D = 0

Đáp án cần chọn là: D

Bài 24: Biểu thức D = x(x2n-1 + y) – y(x + y2n-1) + y2n – x2n + 5, D có giá trị là:

A. 2y2n        

B. -5           

C. x2n          

D. 5

Hiển thị đáp án

Lời giải

Ta có

D = x(x2n-1 + y) – y(x + y2n-1) + y2n – x2n + 5

= x.x2n-1 + x.y – y.x – y.y2n-1 + y2n – x2n + 5

= x2n + xy – xy – y2n + y2n – x2n + 5

= (x2n – x2n) + (xy – xy) + (y2n – y2n) + 5

= 0 + 0 + 0 + 5 = 5

Đáp án cần chọn là: D

Bài 25: Rút gọn biểu thức N = 2xn(3xn+2 – 1) – 3xn+2(2xn – 1) ta được

A. N = 2xn + 3xn+2                   

B. N = -2xn – 3xn+2

C. N = -2xn + 3xn+2                  

D. N = -2xn + xn+2

Hiển thị đáp án

Lời giải

Ta có N = 2xn(3xn+2 – 1) – 3xn+2(2xn – 1)

N = 2xn(3xn+2 – 1) – 3xn+2(2xn – 1)

= 2xn.3xn+2 – 2xn.1 – 3xn+2.2xn – 3xn+2.(-1)

= 6xn+n+2 – 2xn – 6.xn+2+n + 3xn+2

= 6x2n+2 – 6x2n+2 – 2xn + 3xn+2

= – 2xn + 3xn+2

Vậy N = – 2xn + 3xn+2

Đáp án cần chọn là: C

Bài 26: Cho hai số tự nhiên n và m. Biết rằng n chia 5 dư 1, m chia 5 dư 4. Hãy chọn câu đúng:

A. m.n chia 5 dư 1                   

B. m – n chia hết cho 5

C. m + n chia hết cho 5            

D. m.n chia 5 dư 3

Hiển thị đáp án

Lời giải

Ta có n chia 5 dư 1 nên n = 5p + 1 (0 < p < n; p ∈ N); m chia 5 dư 4 nên 

m = 5q + 4 (0 < q < m ; q ∈ N)

Khi đó m.n = (5p + 1)(5q + 4) = 25pq + 20p + 5q + 4 = 5(5pq + 4p + q) + 4 

Mà 5(5pq + 4p + q) ⋮ nên m.n chia 5 dư 4 , phương án A sai, D sai.

Ta có m – n = 5q + 4 − (5p + 1) = 5q − 5p + 3

Mà 5p ⋮ 5; 5q ⋮ 5 nên m − n chia 5 dư 3 , phương án B sai.

Ta có m + n = 5q + 4 + 5p + 1 = 5q + 5p + 5 = 5(q + p + 1) ⋮ 5 nên C đúng.

Đáp án cần chọn là: C

Bài 27: Cho hai a, b là những số nguyên và (2a + b) ⋮ 13; (5a – 4b) ⋮ 13. Hãy chọn câu đúng:

A. a – 6b chia hết cho 13         

B. a – 6b chia cho 13 dư 6

C. a – 6b chia cho 13 dư 1        

D. a – 6b chia cho 13 dư 3Hiển thị đáp án

Lời giải

Ta có (2a + b) ⋮ 13; (5a – 4b) ⋮ 13, suy ra 2(2a + b) ⋮ 13

Từ đó ta có (5a – 4b) – 2(2a + b) ⋮ 13 hay a – 6b ⋮ 13

Đáp án cần chọn là: A

Bài 28: Cho hình thang có đáy lớn gấp đôi đáy nhỏ, đáy nhỏ lớn hơn chiều cao 2 đơn vị. Biểu thức tính diện tích hình thang là

Bài 29: Cho hình chữ nhật có chiều dài lớn hơn chiều rộng là 5 đơn vị. Biểu thức tính diện tích hình chữ nhật là:

A. S = x2 + 5x

Bài 30: Giá trị của biểu thức M = x(x3 + x2 – 3x – 2)- (x2 – 2)(x2 + x – 1) là

A. 2            

B. 1            

C. – 1         

D. – 2

Hiển thị đáp án

Lời giải

Ta có

M = x(x3 + x2 – 3x – 2)- (x2 – 2)(x2 + x – 1)

= x.x3 + x.x2 – 3x.x – 2.x – (x2.x2 + x2.x – x2 – 2x2 – 2x + 2)

= x4 + x3 – 3x2 – 2x – (x4 + x3 – 3x2 – 2x + 2)

= x4 + x3 – 3x2 – 2x – x4 – x3 + 3x2 + 2x – 2

= – 2

Vậy M = -2

Đáp án cần chọn là: D

Bài 31: Giá trị của biểu thức P = (3x – 1)(2x + 3) – (x – 5)(6x – 1) – 38x là

A. P = -8    

B. P = 8      

C. P = 2      

D. P = -2

Hiển thị đáp án

Lời giải

Ta có

P = (3x – 1)(2x + 3) – (x – 5)(6x – 1) – 38x

= 3x.2x + 3x.3 – 1.2x – 1.3 – (x.6x – x – 5.6x – 5.(-1)) – 38x

= 6x2 + 9x – 2x – 3 – 6x2 + x + 30x – 5 – 38x

= (6x2 – 6x2) + (9x – 2x + x + 30x – 38x) – 3 – 5

= -8

Vậy P = -8

Đáp án cần chọn là: A

Bài 32: Cho A = (3x + 7)(2x + 3) – (3x – 5)(2x + 11); B = x(2x + 1) – x2(x + 2) + x3 – x + 3. Chọn khẳng định đúng

A. A = B    

B. A = 25B 

C. A = 25B + 1

D. A = B/2 

Hiển thị đáp án

Lời giải

A = (3x + 7)(2x + 3) – (3x – 5)(2x + 11)

= 3x.2x + 3x.3 + 7.2x + 7.3 – (3x.2x + 3x.11 – 5.2x – 5.11)

= 6x2 + 9x + 14x + 21 – (6x2 + 33x – 10x – 55)

= 6x2 + 23x + 21 – 6x2 – 33x + 10x + 55 = 76

B = x(2x + 1) – x2(x + 2) + x3 – x + 3

= x.2x + x – (x2.x + 2x2) + x3 – x + 3

= 2x2 + x – x3 – 2x2 + x3 – x + 3 = 3

Từ đó ta có A = 76; B = 3 mà 76 = 25.3 + 1 nên A = 25B + 1

Đáp án cần chọn là: C

Bài 33: Cho M = -3(x – 4)(x – 2) + x(3x – 18) – 25; N = (x – 3)(x + 7) – (2x – 1)(x + 2) + x(x – 1). Chọn khẳng định đúng.

A. M – N = 30

B. M – N = -30

C. M – N = 20

D. M – N = -68

Hiển thị đáp án

Lời giải

M = -3(x – 4)(x – 2) + x(3x – 18) – 25

= -3(x2 – 2x – 4x + 8) + x.3x + x.(-18) – 25

= -3x2 + 6x + 12x – 24 + 3x2 – 18x – 25

= (-3x2 + 3x2) + (6x + 12x – 18x) – 24 – 25

= -49

N = (x – 3)(x + 7) – (2x – 1)(x + 2) + x(x – 1)

= x.x + x.7 – 3.x – 3.7 – (2x.x + 2x.2 – x – 1.2) + x.x + x.(-1)

= x 2 + 7x – 3x – 21 – 2x2 – 4x + x + 2 + x2 – x

= (x2 – 2x2 + x2) + (7x – 3x – 4x + x – x) – 21 + 2

= -19

Vậy M = -49; N = -19 ⇒ M – N = -30

Đáp án cần chọn là: B

Bài 34: Gọi x là giá trị thỏa mãn 5(3x + 5) – 4(2x – 3) = 5x + 3(2x – 12) + 1. Khi đó

A. x > 18    

B. x < 17    

C. 17 < x < 19

D. 18 < x < 20

Hiển thị đáp án

Lời giải

Ta có

5(3x + 5) − 4(2x − 3) = 5x + 3(2x − 12) + 1

⇔ 15x + 25 − 8x + 12 = 5x + 6x – 36 + 1

⇔ 7x + 37 = 11x − 35

⇔ 4x = 72

⇔ x = 18

Vậy x = 18. 

Suy ra 17 < x < 19 nên chọn C.

Đáp án cần chọn là: C

Bài 35: Gọi x là giá trị thỏa mãn (3x – 4)(x – 2) = 3x(x – 9) – 3. Khi đó

A. x < 0      

B. x < -1     

C. x > 2      

D. x > 0

Hiển thị đáp án

Lời giải

Ta có (3x – 4)(x – 2) = 3x(x – 9) – 3

⇔ 3x.x+ 3x.(-2) – 4.x – 4.(-2) = 3x.x + 3x.(-9) – 3

⇔ 3x2 – 6x -4x + 8 = 3x2 – 27x – 3

Bài 36: Tính giá trị của biểu thức

P = x10 – 13x9 + 13x8 – 13x7 + … – 13x + 10 tại x = 12

A. P = -2    

B. P = 2      

C. P = 4      

D. P = 0

Hiển thị đáp án

Lời giải

Ta có

P = x10 – 13x9 + 13x8 – 13x7 + … – 13x + 10

= x10 – 12x9 – x9 + 12x8 + x8 – 12x7 – x7 + 12x6 + … +x2 – 12x – x + 10

= x9(x – 12) – x8(x – 12) + x7(x – 12) – … + x(x – 12) – x + 10

Thay x = 12 vào P ta được

P = 129.(12 – 12) – 128(12 – 12) + 127(12 – 12) – … + 12(12 – 12) – 12 + 10

= 0 + … + 0 – 2 = -2

Vậy P = -2

Đáp án cần chọn là: A

Bài 37: Tính bằng cách hợp lý giá trị của A = x5 – 70x4 – 70x3 – 70x2 – 70x + 29 tại x = 71.

A. A = 50   

B. A = -100          

C. A = 100 

D. A = -50

Hiển thị đáp án

Lời giải

Ta có

A = x5 – 70x4 – 70x3 – 70x2 – 70x + 29

= x5 – 71x4 + x4 – 71x3 + x3 – 71x2 + x2 – 71x + x – 71 + 100

= x4(x – 71) + x3(x – 71) + x2(x – 71) + x(x – 71) + (x – 71) + 100

Vì x = 71 nên x – 71 = 0, thay x – 71 = 0 vào A ta đươc

A = x4.0 + x3.0 + x2.0 + x.0 + 0 + 100 = 100

Vậy A = 100

Đáp án cần chọn là: C

Bài 38: Xác định hệ số a, b, c biết rằng với mọi giá trị của x thì (ax + 4)(x2 + bx – 1) = 9x3 + 58x2 + 15x + c

A. a = 9, b = -4, c = 6               

B. a = 9, b = 6, c = -4

C. a = 9, b = 6, c = 4                

D. a = -9, b = -6, c = -4

Hiển thị đáp án

Lời giải

Ta có  T = (ax + 4)(x2 + bx – 1)

= ax.x2 + ax.bx + ax.(-1) + 4.x2 + 4.bx + 4.(-1)

= ax3 + abx2 – ax + 4x2 + 4bx – 4

= ax3 + (abx2 + 4x2) + (4bx – ax) – 4

= ax3 + (ab + 4)x2 + (4b – a)x – 4

Theo bài ra ta có (ax + 4)(x2 + bx – 1) = 9x3 + 58x2 + 15x + c đúng với mọi x

⇔ ax3 + (ab + 4)x2 + (4b – a)x – 4 = 9x3 + 58x2 + 15x + c đúng với mọi x.

Vậy a = 9, b = 6, c = -4

Đáp án cần chọn là: B

Bài 39: Cho x2 + y2 = 2, đẳng thức nào sau đây đúng?

A. 2(x + 1)(y + 1) = (x + y)(x + y – 2)

B. 2(x + 1)(y + 1) = (x + y)(x + y + 2)

D. (x + 1)(y + 1) = (x + y)(x + y + 2)

Hiển thị đáp án

Lời giải

Ta có 2(x + 1)(y + 1) = 2(xy + x + y + 1) = 2xy + 2x + 2y + 2

Thay x2 + y2 = 2 ta được

2xy + 2x + 2y + x2+ y2

= (x2+ xy + 2x) + (y2 + xy + 2y)

= x(x + y + 2) + y(x + y + 2) = (x + y)(x + y +2)

Từ đó ta có 2(x + 1)(y + 1) = (x + y)(x + y + 2)

Đáp án cần chọn là: B

Bài 40: Cho biết (x + y)(x + z) + (y + z)(y + x) = 2(z + x)(z + y). Khi đó

Bài 41: Cho các số x, y, z tỉ lệ với các số a, b, c. Khi đó (x2 + 2y2 + 3z2)(a2 + 2b2 + 3c2) bằng

A. ax + 2by + 3cz 

B. (2ax + by + 3cz)2

C. (2ax + 3by + cz)2

D. (ax + 2by + 3cz)2

Hiển thị đáp án

Lời giải

Thay x = ka, y = kb, z = kc vào (x2 + 2y2 + 3z2)(a2 + 2b2 + 3c2) ta được

[(ka)2 + 2(kb)2 + 3(kc)2](a2 + 2b2 + 3c2)

= (k2a2 + 2k2b2 + 3k2c2)(a2 + 2b2 + 3c2)

= k2(a2 + 2b2 + 3c2)(a2 + 2b2 + 3c2)

= k2(a2 + 2b2 + 3c2)2 = [k((a2 + 2b2 + 3c2)]2

= (ka2 + 2kb2 + 3kc2)2

= (ka.a + 2kb.b + 3kc.c)2

= (xa + 2yb + 3zc)2 do x = ka,y = kb, z = kc

Vậy (x2 + 2y2 + 3z2)(a2 + 2b2 + 3c2) = (ax + 2by + 3cz)2

Đáp án cần chọn là: D

Bài 42: Cho B = (m – 1)(m + 6) – (m + 1)(m – 6). Chọn kết luận đúng.

A. B ⁝ 10 với mọi m Є Z          

B. B ⁝ 15 với mọi m Є Z 

C. B ⁝ 9 với mọi m Є Z            

D. B ⁝ 20 với mọi m Є Z 

Hiển thị đáp án

Lời giải

Ta có B = (m – 1)(m + 6) – (m + 1)(m – 6)

          = m2 + 6m – m – 6 – (m2 – 6m + m – 6)

          = m2 + 5m – 6 – m2 + 6m – m + 6 = 10m

Nhận thấy 10 ⁝ 10 ⇒ 10.m ⁝ 10 nên B ⁝ 10 với mọi giá trị nguyên của m.

Đáp án cần chọn là: A

Bài 43: Cho m số mà mỗi số bằng 3n – 1 và n số mà mỗi số bằng 9 – 3m. Biết tổng tất cả các số đó bằng 5 lần tổng m + n. Khi đó

Bài 44: Tính tổng các hệ số của lũy thừa bậc ba, lũy thừa bậc hai và lũy thừa bậc nhất trong kết quả của phép nhân (x2 + x + 1)(x3 – 2x + 1)

A. 1            

B. -2           

C. – 3         

D. 3

Hiển thị đáp án

Lời giải

Ta có (x2 + x + 1)(x3 – 2x + 1)

          = x2.x3 + x2.(-2x) + x2.1 + x.x3 + x.(-2x) + x.1 + 1.x3  + 1.(-2x) + 1.1

          = x5 – 2x3 + x2 + x4 – 2x2 + x + x3 – 2x + 1

          = x5 + x4 – x3 – x2 – x + 1

Hệ số của lũy thừa bậc ba là – 1

Hệ số của lũy thừa bậc hai là – 1

Hệ số của lũy thừa bậc nhất là – 1

Tổng các hệ số này là -1 +(-1) + (-1) = -3

Đáp án cần chọn là: C

Giải bài tập sách giáo khoa toán 8 ⭐️⭐️⭐️⭐️⭐️

Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601

Be the first to comment

Leave a Reply

Your email address will not be published.


*