Trả lời câu hỏi Toán 8 Tập 2 Bài 2 trang 59: Tam giác ABC có AB = 6cm; AC = 9cm. Lấy trên cạnh AB điểm B’, trên cạnh AC điểm C’ sao cho AB’ = 2cm; AC’ = 3cm (h.8).
2) Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng a cắt AC tại điểm C”.
a) Tính độ dài đoạn thẳng AC”.
b) Có nhận xét gì về C’ và C” và về hai đường thẳng BC và B’C’?
b) Trên đoạn thẳng AC ta có: AC’ = AC” = 3 cm nên hai điểm C’ và C” trùng nhau.
Khi đó, hai đường thẳng BC và B’C’ song song với nhau.
Khi đó, hai đường thẳng BC và B’C’ song song với nhau.
Trả lời câu hỏi Toán 8 Tập 2 Bài 2 trang 60: Quan sát hình 9.
a) Trong hình đã cho có bao nhiêu cặp đường thẳng song song với nhau?
b) Tứ giác BDEF là hình gì?
c) So sánh các tỉ số
và cho nhận xét về mối liên hệ giữa các cặp cạnh tương ứng của hai tam giác ADE và ABC.
Nên theo định lí Ta – let đảo ta có: EF // AB.
b) Vì DE // BC nên DE // BF
Vì EF // AB nên EF // DB.
Tứ giác BDEF là hình bình hành vì có các cặp cạnh đối song song với nhau.
c) Tứ giác BDEF là hình bình hành ⇒ DE = BF = 7.
Vậy ba cạnh của ΔADE tương ứng tỉ lệ với ba cạnh của ΔABC.
Trả lời câu hỏi Toán 8 Tập 2 Bài 2 trang 62: Tính độ dài x của các đoạn thẳng trong hình 12.
Lời giải
Áp dụng hệ quả định lí Ta – lét ta có:
Bài 6 (trang 62 SGK Toán 8 tập 2): Tìm các cặp đường thẳng song song trong hình 13 và giải thích vì sao chúng song song.
Lời giải:
+) Xét hình 13a): MN // AB.
Chứng minh:
Từ (1) và (2) suy ra: AB // A’B’ // A”B”.
Vậy các cặp đường thẳng song song là: MM // AB, AB // A’B’ // A”B”.
Kiến thức áp dụng
Định lý Ta-let đảo :
+ Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
ΔABC, B’ ∈ AB, C’ ∈ AC.
Bài 7 (trang 62 SGK Toán 8 tập 2): Tính các độ dài x, y trong hình 14.
Ta có: A’B’ ⊥ AA’; AB ⊥ AA’ ⇒ A’B ‘ // AB
Kiến thức áp dụng
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 8 (trang 63 SGK Toán 8 tập 2): a) Để chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau, người ta đã làm như hình 15.
Hãy mô tả cách làm trên và giải thích vì sao các đoạn thẳng AC, CD, DB bằng nhau?
b) Bằng cách làm tương tự, hãy chia đoạn thẳng AB cho trước thành 5 đoạn bằng nhau. Hỏi có cách nào khác với cách làm như trên mà vẫn có thể chia đoạn thẳng AB cho trước thành 5 đoạn thẳng bẳng nhau?
Lời giải:
a) – Mô tả cách làm:
+ Vẽ đoạn thẳng PQ song song với AB, PQ có độ dài bằng 3 đơn vị.
+ E, F nằm trên PQ sao cho PE = EF = FQ = 1. Xác định giao điểm O của hai đoạn thẳng PB và QA
+ Vẽ các đường thẳng EO, FO cắt AB tại C và D.
Khi đó ta được AC = CD = DB.
– Chứng minh AC = CD = DB:
Theo hệ quả định lý Ta-let ta có:
Ngoài cách trên, ta có thể chia một đoạn thẳng thành 5 đoạn bằng nhau bằng cách vẽ thêm một đoạn thẳng AC bằng 5 đơn vị, chia đoạn thẳng AC thành 5 đoạn thẳng bằng nhau, mỗi đoạn bằng 1 đơn vị: AD = DE = EF = FG = GC.
Từ các điểm D, E, F, G ta kẻ các đường thẳng song song với BC, cắt AB tại H, I, J, K. Khi đó ta thu được các đoạn thẳng AH = HI = IJ = JK = KB.
Kiến thức áp dụng
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 9 (trang 63 SGK Toán 8 tập 2): Cho tam giác ABC và điểm D trên cạnh AB sao cho AD = 13,5cm, DB = 4,5cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.
Lời giải:
Gọi DH và BK lần lượt là khoảng cách từ D và B đến cạnh AC.
Ta có AB = AD + DB
⇒ AB = 13,5 + 4,5 = 18 (cm)
Vì DH // BK (cùng vuông góc với AC) nên áp dụng hệ quả định lí Ta-lét ta có:
Vậy tỉ số khoảng cách từ D và B đến cạnh AC là 3/4
Kiến thức áp dụng
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 10 (trang 63 SGK Toán 8 tập 2): Tam giác ABC có đường cao AH. Đường thẳng d song song với BC cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B’, C’ và H’ (h.16).
Vậy diện tích tam giác A’B’C’ là 7,5cm2.
Kiến thức áp dụng
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 11 (trang 63 SGK Toán 8 tập 2): Tam giác ABC có BC = 15cm. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường EF // BC, MN // BC (h.17).
a) Tính độ dài các đoạn thẳng MN và EF.
b) Tính diện tích tứ giác MNFE, biết rằng diện tích của tam giác ABC là 270cm2.
Lời giải:
a) Áp dụng hệ quả định lý Ta-let ta có:
Kiến thức áp dụng
+ Hệ quả định lý Ta-let: Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 12 (trang 64 SGK Toán 8 tập 2): Có thể đo được chiều rộng của một khúc sông mà không cần phải sang bờ bên kia hay không?
Người ta tiến hành đo đạc các yếu tố hình học cần thiết để tính chiều rộng của khúc sông mà không cần phải sang bờ bên kia. Nhìn hình vẽ đã cho, hãy mô tả những công việc cần làm và tính khoảng cách AB =x theo BC =a, B’C’ = a’; BB’ = h.
Lời giải:
+ Mô tả cách làm:
– Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B’ thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.
– Trên hai đường thẳng vuông góc với AB’ tại B và B’ lấy C và C’ thằng hàng với A.
– Đo độ dài các đoạn BB’ = h, BC = a, B’C’ = a’ ta sẽ tính được đoạn AB.
+ Cách tính AB.
Ta có: BC ⊥ AB’ và B’C’ ⊥ AB’ ⇒ BC // B’C’
ΔAB’C’ có BC // B’C’ (B ∈ AB’, C ∈ AC’)
Kiến thức áp dụng
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 13 (trang 64 SGK Toán 8 tập 2): Có thể đo gián tiếp chiều cao của một bức tường khá cao bằng dụng cụ đơn giản được không?
Hình 19 thể hiện cách đo chiều cao AB của một bức tường bằng các dụng cụ đơn giản gồm: Hai cọc thẳng đứng (cọc 1 cố định; cọc 2 có thể di động được) và sợi dây FC. Cọc 1 có chiều cao DK = h. Các khoảng cách BC = a, DC = b đo được bằng thước dây thông dụng.
a) Em hãy cho biết người ta tiến hành đo đạc như thế nào.
b) Tính chiều cao AB theo h, a, b.
Lời giải:
a) Cách tiến hành:
– Đặt hai cọc thẳng đứng, di chuyển cọc 2 sao cho 3 điểm A, F, K nằm trên đường thẳng.
– Dùng sợi dây căng thẳng qua 2 điểm F và K để xác định điểm C trên mặt đất (3 điểm F, K, C thẳng hàng).
b) ΔABC có AB // KD (D ∈ BC, K ∈ AC)
Kiến thức áp dụng
+ Hệ quả định lý Ta-let : Nếu một đường thẳng cắt hai cạnh (hoặc cạnh kéo dài) của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Bài 14 (trang 64-65 SGK Toán 8 tập 2): Cho ba đoạn thẳng có độ dài là m, n, p (cùng đơn vị đo).
Dựng đoạn thẳng có độ dài x sao cho:
– Từ đó ta có OA’ = x.
Lời giải:
a)
– Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 1 đơn vị, OB = 2 đơn vị.
+ Trên tia Oy lấy điểm M sao cho OM = m.
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại C.
Khi đó đoạn thẳng OC chính là đoạn thẳng cần dựng.
b) Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = 2 đơn vị, OB = 3 đơn vị
+ Trên tia Oy lấy điểm N sao cho ON = n.
+ Vẽ đường thẳng qua A và song song với NB cắt Oy tại D.
Khi đó đoạn thẳng OD chính là đoạn thẳng cần dựng.
c) Cách dựng:
+ Vẽ hai tia Ox, Oy không đối nhau.
+ Trên tia Ox lấy A và B sao cho OA = n đơn vị, OB = p đơn vị
+ Trên tia Oy lấy điểm M sao cho OM = m
+ Vẽ đường thẳng qua B và song song với MA cắt Oy tại E
Khi đó đoạn thẳng OE chính là đoạn thẳng cần dựng.
Kiến thức áp dụng
Định lý Talet: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
Cho ΔABC, B’C’ // BC (B’ ∈ AB, C’ ∈ AC)
Lý thuyết & Bài tập Bài 2 có đáp án: Định lí đảo và hệ quả của định lí Ta-lét
A. Lý thuyết
1. Định lý đảo
Nếu một đường thẳng cắt hai cạnh một tam giác và định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Tổng quát: Δ ABC, B’ ∈ AB, C’ ∈ AC; AB’/BB’ = AC’/C’C
Suy ra: B’C’//BC.
Ví dụ: Trong Δ ABC có AB = 6cm, AC = 9cm. Lấy trên cạnh AB điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 2cm, AC’ = 3cm. Chứng minh B’C’//BC.
Hướng dẫn:
Trong Δ ABC, B’ ∈ AB, C’ ∈ AC.
Ta có
Suy ra: B’C’//BC.
2. Hệ quả của định lý Ta – lét
Nếu một đường thẳng cắt hai cạnh còn lại của một của một tam giác và song song với các cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh còn lại của tam giác đã cho.
Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng song song với một cạnh và cắt phần kéo dài của hai cạnh còn lại.
Ví dụ: Trong Δ ABC có AB = 8cm và B’C’//BC. Lấy trên cạnh AB điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 2cm, AC’ = 3cm. Tính độ dài cạnh AC.
Hướng dẫn:
Áp dụng hệ quả trên ta có: Δ ABC, B’C’//BC; B’ ∈ AB, C’ ∈ AC
Khi đó ta có: AB’/AB = AC’/AC ⇔ 2/8 = 3/AC ⇒ AC = (3.8)/2 = 12( cm )
B. Bài tập tự luyện
Bài 1: Tính độ dài x, y trong các hình bên
Hướng dẫn:
a) Áp dụng hệ quả của định lí Ta – lét ta có:
DE//BC ⇒ BC/DE = AB/AD hay x/8 = 28,5/9,5
⇔ x = (8.28,5)/9,5 = 456/19 ≈ 31,58
b) Ta có: A’B’//AB vì cùng vuông góc AA’
Áp dụng hệ quả của định lí Ta – lét ta có:
A’B’//AB ⇒ AB/A’B’ = AO/A’O hay x/4,2 = 6/3 ⇔ x = 8,4
Áp dụng định lí Py – ta – go với Δ OAB ta có:
OB2 = AB2 + OA2 ⇒ y = √(8,42 + 62) ≈ 10,32
Bài 2: Cho hình thang ABCD ( AB//CD ) có O là giao điểm của hai đường chéo. Đường thẳng qua O song song hai đáy và cắt AD, BC lần lượt tại E và F. Chứng minh OE = OF.
Hướng dẫn:
✅ Giải bài tập sách giáo khoa toán 8 ⭐️⭐️⭐️⭐️⭐️
Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601
Leave a Reply