Bài 11: Hình thoi

5/5 - (1 vote)

Trả lời câu hỏi Toán 8 Tập 1 Bài 11 trang 104: Chứng minh rằng tứ giác ABCD trên hình 100 cũng là một hình bình hành.

Lời giải

ABCD có các cặp cạnh đối bằng nhau ⇒ ABCD là hình bình hành

Trả lời câu hỏi Toán 8 Tập 1 Bài 11 trang 104: Cho hình thoi ABCD, hai đường chéo cắt nhau tại O (h.101).

a) Theo tính chất của hình bình hành, hai đường chéo của hình thoi có tính chất gì ?

b) Hãy phát hiện thêm các tính chất khác của hai đường chéo AC và BD.

Lời giải

a) Vì hình thoi có tất cả các tính chất của hình bình hành nên theo tính chất của hình bình hành, hai đường chéo của hình thoi có tính chất cắt nhau tại trung điểm mỗi đường

b) Xét ΔAOB và ΔCOB

AB = CB

BO chung

OA = OC (O là trung điểm AC )

⇒ ΔAOB = ΔCOB (c.c.c)

Chứng minh tương tự, ta kết luận được:

AC, BD là các đường phân giác của các góc của hình thoi và AC ⊥ BD tại O

Trả lời câu hỏi Toán 8 Tập 1 Bài 11 trang 105: Hãy chứng minh dấu hiệu nhận biết 3.

Lời giải

Dấu hiệu nhận biết 3: Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi

ABCD là hình bình hành ⇒ O là trung điểm AC và O là trung điểm BD

Xét hai tam giác vuông AOB và AOD có:

OA chung

OB = OD (O là trung điểm BD)

⇒ ΔAOB = ΔAOD (hai cạnh góc vuông)

⇒ AB = AD (hai cạnh tương ứng)

Hình bình hành ABCD ⇒ AB = CD và AD = BC

Do đó AB = BC = CD = DA ⇒ ABCD là hình thoi

Bài 73 (trang 105 SGK Toán 8 Tập 1): Tìm các hình thoi trên hình 102.

Lời giải:

Các tứ giác ở hình 102a, b, c, e là hình thoi.

– Hình 102a: ABCD là hình thoi vì có AB = BC = CD = DA

– Hình 102b: EFGH là hình thoi vì:

EF = GH và EH = FG ⇒ EFGH là hình bình hành

Lại có EG là tia phân giác của Ê

⇒ EFGH là hình bình hành. (Dấu hiêu 4).

– Hình 102c: KINM là hình thoi vì:

IKMN có hai đường chéo cắt nhau tại trung điểm mỗi đường

⇒ IKMN là hình bình hành

Lại có IM ⊥ KN

⇒ IKMN là hình thoi. (Dấu hiệu 3).

– Hình 102e: ADBC là hình thoi vì:

AC = AD = AB (C, B, D cùng thuộc đường tròn tâm A).

BC = BA = BD (A, C, D cùng thuộc đường tròn tâm B)

⇒ AC = CB = BD = DA

⇒ ACBD là hình thoi.

– Tứ giác trên hình 102d không là hình thoi vì 4 cạnh không bằng nhau.

Kiến thức áp dụng

Các dấu hiệu nhận biết hình thoi:

+ Tứ giác có 4 cạnh bằng nhau

+ Hình bình hành có hai cạnh kề bằng nhau

+ Hình bình hành có hai đường chéo vuông góc với nhau

+ Hình bình hành có một đường chéo là phân giác của một góc.

Bài 74 (trang 106 SGK Toán 8 Tập 1): Hai đường chéo của một hình thoi bằng 8cm và 10cm. Cạnh của hình thoi bằng giá trị nào trong các giá trị sau:

Giả sử ta có hình thoi ABCD thỏa mãn yêu cầu bài toán, trong đó đường chéo AC = 8cm, BD = 10cm. 

Gọi ABCD O là giao điểm hai đường chéo

⇒ O là trung điểm của AC và BD.

Vậy chọn đáp án là B.

Kiến thức áp dụng

Hình thoi có hai đường chéo vuông góc với nhau.

Bài 75 (trang 106 SGK Toán 8 Tập 1): Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.

Lời giải:

+) Xét tam giác ABD có:

E là trung điểm của AB 

H là trung điểm của AD

⇒ EH là đường trung bình của tam giác ADB

Ta lại có ABCD là hình chữ nhật nên AC = BD (5)

Từ (1), (2), (3), (4) và (5) suy ra EF = FG = GH= HE

Tứ giác EFGH là hình thoi.

Kiến thức áp dụng

+ Hình chữ nhật có bốn góc vuông

+ Tứ giác có bốn cạnh bằng nhau là hình thoi.

Bài 76 (trang 105 SGK Toán 8 Tập 1): Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.

Lời giải:

+) Xét tam giác ABC có:

E là trung điểm của AB 

F là trung điểm của BC

⇒ EF là đường trung bình của tam giác ABC

Kiến thức áp dụng

+ Đường trung bình trong tam giác thì song song với cạnh còn lại

+ Hình thoi có hai đường chéo vuông góc.

+ Hình bình hành có một góc vuông là hình chữ nhật.

Bài 77 (trang 106 SGK Toán 8 Tập 1): Chứng minh rằng:

a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.

b) Hai đường chéo của hình thoi là hai trục đối xứng của hình thoi.

Lời giải:

a) Gọi O là giao điểm của hai đường chéo của hình thoi ABCD

Vì ABCD là hình thoi nên ABCD là hình bình hành 

Mà tâm đối xứng của hình bình hành là giao điểm của hai đường chéo.

Suy ra O là tâm đối xứng của hình thoi ABCD.

b)

Xét hình thoi ABCD, gọi O là giao điểm của 2 đường chéo.

* Ta chứng minh: đường chéo BD là trục đối xứng của hình

Lấy điểm M bất kì thuộc hình thoi. Không mất tổng quát, M nằm trên CD.

Gọi M’ đối xứng với M qua đường thẳng BD. Ta chứng minh điểm M’ cũng thuộc hình thoi

+ Gọi I là giao điểm của MM’ và BD.

Xét tam giác DIM và DIM’ có:

Suy ra điểm M’ nằm trên cạnh AD hay điểm M’ thuộc hình thoi

Do đó BD là trục đối xứng của hình thoi.

Chứng minh tương tự, ta có: AC là trục đối xứng của hình thoi.

Vậy hai đường chéo AC, BD là hai trục đối xứng của hình thoi.

Kiến thức áp dụng

+ Hình bình hành nhận giao điểm của hai đường chéo làm tâm đối xứng.

+ Đường thẳng d được gọi là trục đối xứng của hình H nếu ta lấy một điểm bất kì thuộc H, điểm đối xứng với điểm vừa lấy qua d cũng thuộc H.

Bài 78 (trang 106 SGK Toán 8 Tập 1): Đố. Hình 103 biểu diễn một phần của cửa xếp, gồm những thanh kim loại dài bằng nhau và được liên kết với nhau bởi các chốt tại hai đầu và tại trung điểm. Vì sao tại mỗi vị trí của cửa xếp, các tứ giác trên hình vẽ đều là hình thoi, các điểm chốt I, K, M, N, O nằm trên một đường thẳng?

Lời giải:

Ta có hình vẽ minh họa như sau:

Vì độ dài các thanh bằng nhau được liên kết bởi các chốt là trung điểm của các thanh đó nên ta có AI = IX = BI = IE = EK = KY = XK = KE = … 

Tứ giác IEKX có IX = IE = EK = XK nên IEKX là hình thoi.

Chứng minh tương tự ta được cá tứ giác trên hình vẽ đều là hình thoi.

Suy ra NM trùng NQ

Suy ra Q, M, N thẳng hàng (3). 

Từ (1), (2) và (3) suy ra các điểm I, K, M, N, O cùng nằm trên một đường thẳng.

Kiến thức áp dụng

+ Hình thoi có hai đường chéo là các đường phân giác của các góc.

Lý thuyết & Bài tập Bài 11 có đáp án: Hình thoi

A. Lý thuyết

1. Định nghĩa

Hình thoi là tứ giác có bốn cạnh bằng nhau.

Hình thoi cũng là một hình bình hành.

Tổng quát: ABCD là hình thoi \Leftrightarrow AB = BC = CD = DA

2. Tính chất

Hình thoi có tất cả các tính chất của hình bình hành.

Định lí: Trong hình thoi:

+ Hai đường chéo vuông góc với nhau.

+ Hai đường chéo là các đường phân giác các góc của hình thoi.

3. Dấu hiệu nhận biết hình thoi

+ Tứ giác có bốn cạnh bằng nhau là hình thoi.

+ Hình bình hành có hai cạnh kề bằng nhau là hình thoi

+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.

Ví dụ: Cho hình chữ nhật ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD. Chứng minh tứ giác MNPQ là hình thoi.

Hướng dẫn:

M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD

⇒ AM = MB; BN = NC; CP = DP; AQ = DQ

⇒ QP là đường trung bình của Δ ADC.

⇒ QP = 1/2BD = 1/2AC       ( 4 )

Từ ( 1 ),( 2 ),( 3 ),( 4 ) ⇒ MN = NP = PQ = QM.

⇒ MNPQ là hình thoi.

B. Bài tập tự luyện

Bài 1: Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đội cạnh đó. Tính các góc của hình thoi.

Hướng dẫn:

Gọi H là chân đường cao kẻ từ đỉnh A xuống cạnh CD, theo giả thiết ta có:

Hướng dẫn:

Xét hình thoi ABCD, kẻ hai đường cao

AH ⊥ BC, AK ⊥ CD.

Ta cần chứng minh: AH = AK.

Áp dụng định nghĩa, tính chất về góc và giả thiết của hình thoi ABCD, ta có:

⇒ Δ ABH = Δ ADH ( g – c – g )

⇒ AH = AK (cặp cạnh tương ứng bằng nhau)

→ (đpcm)

Giải bài tập sách giáo khoa toán 8 ⭐️⭐️⭐️⭐️⭐️

Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601

Be the first to comment

Leave a Reply

Your email address will not be published.


*