Bài 1: Đa giác. Đa giác đều

5/5 - (1 vote)

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 114: Tại sao hình gồm năm đoạn thẳng AB, BC, CD, DE, EA ở hình 118 không phải là đa giác ?

Lời giải

Hình 118 không phải là một đa giác vì DE và EA cùng nằm trên một đường thẳng

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 114: Tại sao các đa giác ở hình 112, 113, 114 không phải là đa giác lồi ?

Lời giải

– Hình 112: Đa giác nằm trên hai nửa mặt phẳng có bờ AB (hoặc bờ DE, hoặc bờ DC).

– Hình 113: Đa giác nằm trên hai nửa mặt phẳng có bờ BC (hoặc bờ CD).

– Hình 114: Đa giác nằm trên hai nửa mặt phẳng có bờ AB (hoặc bờ BC, hoặc bờ CD, hoặc bờ DE, hoặc bờ EA).

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 114: Quan sát đa giác ABCDEG ở hình 119 rồi điền vào chỗ trống trong các câu sau:

Các đỉnh là các điểm: A, B, …

Các đỉnh kề nhau là: A và B, hoặc B và C, hoặc …

Các cạnh là các đoạn thẳng: AB, BC, …

Các đường chéo là các đoạn thẳng nối hai đỉnh không kề nhau: AC, CG, …

Các góc là: ˆA,ˆB

, …

Các điểm nằm trong đa giác (các điểm trong của đa giác) là: M, N, …

Các điểm nằm ngoài đa giác (các điểm ngoài của đa giác) là: Q, …

Lời giải

Các đỉnh là các điểm: A, B, C, D, E, G.

Các đỉnh kề nhau là: A và B, hoặc B và C, hoặc C và D, hoặc D và E, hoặc E và G, hoặc G và A.

Các cạnh là các đoạn thẳng: AB, BC, CD, DE, EG, GA.

Các đường chéo là các đoạn thẳng nối hai đỉnh không kề nhau: AC, CG, AD, AE, BG, BE, BD, CE, DG.

Các góc là: ˆA,ˆB,ˆC,ˆD,ˆE,ˆG

.

Các điểm nằm trong đa giác (các điểm trong của đa giác) là: M, N, P.

Các điểm nằm ngoài đa giác (các điểm ngoài của đa giác) là: Q, R.

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 115: Hãy vẽ các trục đối xứng và tâm đối xứng của mỗi hình 120a, b, c, d (nếu có)

Lời giải

a) Tam giác đều có 3 trục đối xứng là các đường trung trực của tam giác đều.

Tam giác đều không có tâm đối xứng.

b) Hình vuông có 4 trục đối xứng là hai đường thẳng nối hai trung điểm của hai cạnh đối nhau của hình vuông và hai đường chéo.

Tâm đối xứng là giao điểm hai đường chéo của hình vuông.

c) Hình ngũ giác đều có 5 trục đối xứng là các đường thẳng nối đỉnh và trung điểm cạnh đối diện đỉnh đó.

Hình ngũ giác đều không có tâm đối xứng.

d) Lục giác đều là hình có 6 trục đối xứng gồm ba đường thẳng nối hai trung điểm của hai cạnh đối nhau của lục giác đều và ba đường chéo chính của lục giác đều.

Tâm đối xứng là giao điểm của các trục đối xứng.

Bài 1 (trang 115 SGK Toán 8 Tập 1): Hãy vẽ phác một lục giác lồi.

Hãy nêu cách nhận biết một đa giác lồi.

Lời giải:

– Lục giác lồi ABCDEF

– Cách nhận biết một đa giác lồi:

Lần lượt xét các nửa mặt phẳng bờ là cạnh của đa giác, nếu đa giác luôn nằm hoàn toàn trong một nửa mặt phẳng thì đa giác là đa giác lồi.

Nếu có 1 cạnh mà đa giác nằm trên cả hai nửa mặt phẳng mà đường thẳng chứa cạnh là bờ thì đa giác không phải đa giác lồi.

Bài 2 (trang 115 SGK Toán 8 Tập 1): Cho ví dụ về đa giác không đều trong mỗi trường hợp sau:

a) Có tất cả các cạnh bằng nhau.

b) Có tất cả các góc bằng nhau.

Lời giải:

a) Hình thoi có tất cả các cạnh bằng nhau nhưng các góc có thể không bằng nhau nên hình thoi không buộc phải là đa giác đều.

b) Hình chữ nhật có tất cả các góc bằng nhau nhưng các cạnh có thể không bằng nhau nên hình chữ nhật không buộc phải là đa giác đều.

Kiến thức áp dụng

Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

Bài 3 (trang 115 SGK Toán 8 Tập 1): Cho hình thoi ABCD có góc ˆA=60°

. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng đa giác EBFGDH là lục giác đều.

Lời giải:

Ta lại có:

F là trung điểm của CB

G là trung điểm của CD 

Suy ra FG là đường trung bình của ∆CBD.

Từ (1), (2) và (3) suy ra:

BE = AE = BF = FC = CG = GD = AH = HD = EH = FG.

Hay EB = BF = FG = GD = DH = HE.

Vì ABCD là hình thoi nên AD // BC

Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.

Kiến thức áp dụng

+ Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

+ Hình thoi có bốn cạnh bằng nhau.

Bài 4 (trang 115 SGK Toán 8 Tập 1): Điền số thích hợp vào các ô trống trong bảng sau:

Lời giải:

Ta có bảng sau:

Kiến thức áp dụng

Trong một đa giác có n đỉnh thì:

+ Có n cạnh .

+ Số đường chéo xuất phá từ 1 đỉnh của đa giác: n(n-3)

+ Tổng số đo các góc của đa giác: (n – 2).180º

+ Số tam giác được tạo thành : n-2

Bài 5 (trang 115 SGK Toán 8 Tập 1): Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n – giác đều.

Lời giải:

Từ bài 4, ta có:

Tổng số đó các góc của đa giác n cạnh là: (n – 2).180o.

Lý thuyết & Bài tập Bài 1 có đáp án: Đa giác. Đa giác đều

1. Khái niệm về đa giác

Định nghĩa: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng mà bờ là đường thẳng chứa bất kì cạnh nào của đa giác đó.

Chú ý: Từ nay nếu nhắc đến đa giác thì ta quy ước đó là đa giác lồi

2. Đa giác đều

Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

Ví dụ: Cho một đa giác đều có 20 cạnh. Tính số đo một góc và số đường chéo của đa giác đều đó ?

Hướng dẫn:

B. Bài tập tự luyện

Bài 1: Cho đa giác đều có 14 cạnh. Tính :

a) Tổng số đo góc của đa giác đó

b) Số đo một góc của đa giác

c) Số đường chéo của đa giác.

Hướng dẫn:

a) Tổng số đo các góc của đa giác n cạnh là ( n – 2 ).1800.

Tổng số đo của đa giác 14 cạnh là ( 14 – 2 ).1800 = 21600.

Giải bài tập sách giáo khoa toán 8 ⭐️⭐️⭐️⭐️⭐️

Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601

Be the first to comment

Leave a Reply

Your email address will not be published.


*